Yet Another Proof of the Strong Equivalence Between Propositional Theories and Logic Programs

نویسندگان

  • Joohyung Lee
  • Ravi Palla
چکیده

Recently, the stable model semantics was extended to a more general syntax beyond the rule form. Cabalar and Ferraris, as well as Cabalar, Pearce, and Valverde, showed that any propositional theory under the stable model semantics can be turned into a logic program. In this note, we present yet another proof of this result. Unlike the other approaches that are based on the logic of hereand-there, our proof uses familiar properties of classical logic, and provides a different explanation of the reduction in terms of classical logic. Based on this idea, we present a prototype implementation of propositional theories under the stable model semantics by calling the answer set solver DLV. Using the same reduction idea, we also note that every first-order formula under the stable model semantics is strongly equivalent to a prenex normal form whose matrix has the form of a logic program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equality propositional logic and its extensions

We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Forgetting in Logic Programs under Strong Equivalence

In this paper, we propose a semantic forgetting for arbitrary logic programs (or propositional theories) under answer set semantics, called HT-forgetting. The HTforgetting preserves strong equivalence in the sense that strongly equivalent logic programs will remain strongly equivalent after forgetting the same set of atoms. The result of an HT-forgetting is always expressible by a logic program...

متن کامل

Reducts of Propositional Theories, Satisfiability Relations, and Generalizations of Semantics of Logic Programs

Over the years, the stable-model semantics has gained a position of the correct (two-valued) interpretation of default negation in programs. However, for programs with aggregates (constraints), the stable-model semantics, in its broadly accepted generalization stemming from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and Pfeifer, which se...

متن کامل

Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic

Over the years, the stable-model semantics has gained a position of the correct (two-valued) interpretation of default negation in programs. However, for programs with aggregates (constraints), the stable-model semantics, in its broadly accepted generalization stemming from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and Pfeifer, which se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007